Exam. Code	:	209003
Subject Code	:	3764

M.Sc. Physics 3rd Semester ELECTRODYNAMICS—II Paper: PHY-502

Time Allowed—3 Hours] [Maximum Marks—100

Note: — Attempt ALL the questions from Section-A and attempt ONE question each from the Sections B, C, D and E.

SECTION—A

- 1. (a) What do you mean by "Transverse Magnetic" modes in a waveguide?
 - (b) Differentiate between a cavity and a waveguide.
 - (c) What are the postulates of special relativity? 2
 - (d) What do you understand by proper and improper time?
 - (e) What do you mean by "Poynting vector"? Explain.
 - (f) In case of electric dipole radiation, if just the input current is doubled, by how much amount the radiated power will increase.
 - (g) Draw the polar intensity diagrams for (a) 1 = 2, m = 0 and (b) 1 = 2, $m = \pm 2$.

2371(2118)/DAG-8669 1 (Contd.)

www.a2zpapers.com

(h)	What	is	the	difference	between	Coulomb	and
	Lorentz gauge ?						2

- (i) What do you mean by the "Q" of a cavity? 2
- (j) A particle with a proper life time of 4 μs, moves through a laboratory frame at a speed of 0.96 c.
 Calculate its life as measured by an observer in laboratory.

SECTION—B

- 2. (a) Suppose we have a rectangular waveguide with height 'a' and width 'b'. Assume TM mode is propagating along the z-direction. Obtain an expression for:
 - (i) Variation of "Ez" as a function of 'x' and 'y', and 8
 - (ii) Allowed wave vector of the TM waves in terms of relevant parameters. 4
 - (b) What is the advantage of perturbing the boundary conditions? Explain.
- 3. (a) Consider a resonant cavity with close faces at

"z = 0" and "z = d". If
$$\psi(x, y) = \psi_0 \cos\left(\frac{m\pi x}{a}\right)$$

$$\cos\left(\frac{n\pi y}{a}\right)$$
, determine \vec{E}_t and \vec{H}_t for TM waves using suitable boundary conditions.

2371(2118)/DAG-8669 2 (Contd.

www.a2zpapers.com

(b) Consider a rectangular waveguide with dimensions
 2.38 cm × 1.11 cm. Find the cut off frequency.
 What TE modes will propagate in this waveguide, if the driving frequency is 1.70 × 10¹⁰ Hz? 8

SECTION—C

- 4. (a) Obtain the transformation relations between u_x', u_y', u_z' and u_x, u_y, u_z and other relevant parameters where the primed frame of reference is moving at a speed "v" with respect to the unprimed frame.
 - (b) Find the speed of a particle if its kinetic energy is n-times its rest energy. 10
- 5. (a) How are Maxwell's equations recast under special relativity?
 - (b) A straight wire placed along z-axis carries a charge density "λ", travelling along +ve z-direction at a speed "v₀". Construct (a) the field tensor and
 (b) the dual tensor at a point on x-axis.

SECTION—D

Derive expressions for radiation field "E" and "B" produced by an oscillating electric dipole oriented along z-axis.

2371(2118)/DAG-8669

2

(Contd.)

www.a2zpapers.com

7. Show that

$$V(r, \theta, t) = \frac{p_0 \cos \theta}{4\pi \in_0 r} \left\{ -\frac{\omega}{c} \sin \left[\omega \left(t - \frac{r}{c} \right) \right] + \frac{1}{r} \cos \left[\omega \left(t - \frac{r}{c} \right) \right] \right\}$$

and
$$\vec{A}(\vec{r},t) = -\frac{\mu_0 p_0 \omega}{4\pi r} \sin \left[\omega \left(t - \frac{r}{c}\right)\right] \hat{z}$$
, satisfy the Lorentz gauge condition.

SECTION—E

- 8. (a) Obtain a mathematical expression for angular distribution of radiation emitted by an accelerated charge particle.
 - (b) Obtain a mathematical expression for Larmour' formula and give its relativistic generalisation.
- 9. (a) Derive an expression for the power radiated by a point charge and discuss its relativistic generalisation?
 - (b) Discuss briefly about relativistic (a) energy and(b) momentum.

200