www.a2zpapers.com

Exam. Code : 209003
 Subject Code : 3764

M.Sc. Physics $3^{\text {rd }}$ Semester ELECTRODYNAMICS-II
 Paper : PHY-502

Time Allowed- 3 Hours]
[Maximum Marks-100
Note :-Attempt ALL the questions from Section-A and attempt ONE question each from the Sections B, C, D and E.

SECTION-A

1. (a) What do you mean by "Transverse Magnetic" modes in a waveguide?
(b) Differentiate between a cavity and a waveguide.
(c) What are the postulates of special relativity? 2
(d) What do you understand by proper and improper time?
(e) What do you mean by "Poynting vector"? Explain.

2
(f) In case of electric dipole radiation, if just the input current is doubled, by how much amount the radiated power will increase.

2
(g) Draw the polar intensity diagrams for (a) $1=2$, $\mathrm{m}=0$ and (b) $1=2, \mathrm{~m}= \pm 2$.

2
2371(2118)/DAG-8669
(h) What is the difference between Coulomb and Lorentz gauge ? 2
(i) What do you mean by the "Q" of a cavity ? 2
(j) A particle with a proper life time of $4 \mu \mathrm{~s}$, moves through a laboratory frame at a speed of 0.96 c . Calculate its life as measured by an observer in laboratory.

SECTION-B

2. (a) Suppose we have a rectangular waveguide with height ' a ' and width ' b '. Assume TM mode is propagating along the z -direction. Obtain an expression for :
(i) Variation of " E_{z} " as a function of ' x ' and ' y ', and
(ii) Allowed wave vector of the TM waves in terms of relevant parameters.
(b) What is the advantage of perturbing the boundary conditions? Explain.
3. (a) Consider a resonant cavity with close faces at " $z=0$ " and " $z=d$ ". If $\psi(x, y)=\psi_{0} \cos \left(\frac{m \pi x}{a}\right)$ $\cos \left(\frac{n \pi y}{a}\right)$, determine \vec{E}_{t} and \vec{H}_{t} for TM waves using suitable boundary conditions.
www.a2zpapers.com
(b) Consider a rectangular waveguide with dimensions $2.38 \mathrm{~cm} \times 1.11 \mathrm{~cm}$. Find the cut off frequency. What TE modes will propagate in this waveguide, if the driving frequency is $1.70 \times 10^{10} \mathrm{~Hz}$? 8

SECTION-C

4. (a) Obtain the transformation relations between $u_{x}{ }^{\prime}$, $u_{y}{ }^{\prime}, u_{z}{ }^{\prime}$ and $u_{x^{\prime}}, u_{y}, u_{z}$ and other relevant parameters where the primed frame of reference is moving at a speed " v " with respect to the unprimed frame.
(b) Find the speed of a particle if its kinetic energy is n -times its rest energy. 10
5. (a) How are Maxwell's equations recast under special relativity?
(b) A straight wire placed along z -axis carries a charge density " λ ", travelling along +ve z -direction at a speed " v ". Construct (a) the field tensor and (b) the dual tensor at a point on x -axis.

SECTION-D

6. Derive expressions for radiation field " E " and " B " produced by an oscillating electric dipole oriented along z-axis.
www.a2zpapers.com
7. Show that
$V(r, \theta, t)=\frac{p_{0} \cos \theta}{4 \pi \epsilon_{0} r}\left\{-\frac{\omega}{c} \sin \left[\omega\left(t-\frac{r}{c}\right)\right]+\frac{1}{r} \cos \left[\omega\left(t-\frac{r}{c}\right)\right]\right\}$ and $\vec{A}(\vec{r}, t)=-\frac{\mu_{0} p_{0} \omega}{4 \pi r} \sin \left[\omega\left(t-\frac{r}{c}\right)\right] \hat{z}$, satisfy the Lorentz gauge condition.

SECTION-E

8. (a) Obtain a mathematical expression for angular distribution of radiation emitted by an accelerated charge particle.
(b) Obtain a mathematical expression for Larmour' formula and give its relativistic generalisation.

10
9. (a) Derive an expression for the power radiated by a point charge and discuss its relativistic generalisation?
(b) Discuss briefly about relativistic (a) energy and (b) momentum.

